在重大疫情的基层应急管理体系构建中,社区韧性治理能力对稳定社区居民情绪、组织社区生活、增强风险抵抗力具有重要作用。在大数据背景下,重大疫情下的社区韧性治理能力评价模型存在“样本量不足、部分样本评价困难、特征提取依赖人工经验、评价模型最优参数确定难”等问题,导致现有机器学习评价方法难以做出准确评价。因此,本文提出结合数据增强和深度迁移学习方法的新型评价方法,该方法使用峰值聚类改进自适应过采样方法(DPAS)和迁移学习方法(TL)从数据增扩和“预训练-微调”两方面提升模型在样本数量不足时的训练效能;GoogLeNet网络通过Inception模块自动提取评价指标用于样本识别,并引入多分类焦点损失(MFL)函数聚焦难分类样本损失结果;同时,利用多目标黏菌优化算法(MOSMA)优化超参数进一步提升模型性能。实例数据验证表明,本文提出方法的评价性能高于其他传统评价方法,通过消融实验和敏感性分析证明了其结构的合理性。
(中国管理科学,1-13)